Chemotherapy of Breast Cancer Cells Using Novel pH-Responsive Cellulose-Based Nanocomposites

The objective of the current study was to compare the anticancer efficacy of doxorubicin-loaded cellulose based magnetic (Fe O ), zinc oxide (ZnO) nanoparticles on and free doxorubicin (DOX) on MCF-7 breast cancer cells. Novel pH-sensitive cellulose-graft poly acrylic acid based Fe O (Cellulose-g-PA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced pharmaceutical bulletin 2019-02, Vol.9 (1), p.122-131
Hauptverfasser: Abbasian, Mojtaba, Mahmoodzadeh, Farideh, Khalili, Azra, Salehi, Roya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the current study was to compare the anticancer efficacy of doxorubicin-loaded cellulose based magnetic (Fe O ), zinc oxide (ZnO) nanoparticles on and free doxorubicin (DOX) on MCF-7 breast cancer cells. Novel pH-sensitive cellulose-graft poly acrylic acid based Fe O (Cellulose-g-PAAg- PAcMNPs) and ZnO (Cellulose-g-PAA-g-PAcZnO) nanocomposites were synthesized via polymerization of acrylic acid and modified 3-(trimethoxysilyl) propyl methacrylate onto the cellulosic backbone via reversible addition-fragmentation chain transfer (RAFT) method. : Cellulose-g-PAA-g-PAcMNPs and Cellulose-g-PAA-g-PAcZnO nanocarriers with mean diameter of 15 and 38 nm were prepared successfully. DOX was loaded effectively to the ZnO and Fe O nanocarriers via complexing and electrostatic force with great encapsulation efficiency of 99.07% and 98.92%, respectively. DOX-loaded nanocarriers showed obvious pHdependent tumor specific drug release pattern. MTT assay results indicated that IC50 of the DOX loaded Cellulose-g-PAA-g-PAcZnO, DOX loaded Cellulose-g-PAA-g-PAcMNPs and free DOX after 48 hours treatment with MCF7 cell lines were about 24.03, 49.27 and 99.76 μg mL , respectively. Therefore both DOX nanoformulations significantly increase antitumor ability compared to free DOX ( < 0.05). The results of MTT assay and DAPI staining revealed that DOX-loaded Cellulose-g-PAA-g-PAcZnO NPs show higher chemotherapy efficiency in MCF7 breast cancer cell line compare to the DOX-loaded Cellulose-g-PAA-g-PAcMNPs due to high interaction of ZnO with DOX. The formation of the complexes between the DOX and ZnO nanoparticles at the chelating sites of the quinone and the phenolic oxygen molecules of DOX, lead to more sustained drug release and enhanced chemotherapy effectiveness by increasing the intracellular concentration of DOX.
ISSN:2228-5881
2251-7308
DOI:10.15171/apb.2019.015