The Drug of Abuse Gamma-Hydroxybutyric Acid Exhibits Tissue-Specific Nonlinear Distribution

ABSTRACT The drug of abuse γ-hydroxybutyric acid (GHB) demonstrates complex toxicokinetics with dose-dependent metabolic and renal clearance. GHB is a substrate of monocarboxylate transporters (MCTs) which are responsible for the saturable renal reabsorption of GHB. MCT expression is observed in man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The AAPS journal 2017-12, Vol.20 (1), p.21-21, Article 21
Hauptverfasser: Felmlee, Melanie A., Morse, Bridget L., Follman, Kristin E., Morris, Marilyn E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The drug of abuse γ-hydroxybutyric acid (GHB) demonstrates complex toxicokinetics with dose-dependent metabolic and renal clearance. GHB is a substrate of monocarboxylate transporters (MCTs) which are responsible for the saturable renal reabsorption of GHB. MCT expression is observed in many tissues and therefore may impact the tissue distribution of GHB. The objective of the present study was to evaluate the tissue distribution kinetics of GHB at supratherapeutic doses. GHB (400, 600, and 800 mg/kg iv) or GHB 600 mg/kg plus l -lactate (330 mg/kg iv bolus followed by 121 mg/kg/h infusion) was administered to rats and blood and tissues were collected for up to 330 min post-dose. K p values for GHB varied in both a tissue- and dose-dependent manner and were less than 0.5 (except in the kidney). Nonlinear partitioning was observed in the liver (0.06 at 400 mg/kg to 0.30 at 800 mg/kg), kidney (0.62 at 400 mg/kg to 0.98 at 800 mg/kg), and heart (0.15 at 400 mg/kg to 0.29 at 800 mg/kg), with K p values increasing with dose consistent with saturation of transporter-mediated efflux. In contrast, lung partitioning decreased in a dose-dependent manner (0.43 at 400 mg/kg to 0.25 at 800 mg/kg) suggesting saturation of active uptake. l -lactate administration decreased K p values in liver, striatum, and hippocampus and increased K p values in lung and spleen. GHB demonstrates tissue-specific nonlinear distribution consistent with the involvement of monocarboxylate transporters. These observed complexities are likely due to the involvement of MCT1 and 4 with different affinities and directionality for GHB transport.
ISSN:1550-7416
1550-7416
DOI:10.1208/s12248-017-0180-7