Rethinking the Dental Amalgam Dilemma: An Integrated Toxicological Approach

Mercury (Hg) has been identified as one of the most toxic nonradioactive materials known to man. Although mercury is a naturally occurring element, anthropogenic mercury is now a major worldwide concern and is an international priority toxic pollutant. It also comprises one of the primary constituen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2019-03, Vol.16 (6), p.1036
Hauptverfasser: Jirau-Colón, Hector, González-Parrilla, Leonardo, Martinez-Jiménez, Jorge, Adam, Waldemar, Jiménez-Velez, Braulio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mercury (Hg) has been identified as one of the most toxic nonradioactive materials known to man. Although mercury is a naturally occurring element, anthropogenic mercury is now a major worldwide concern and is an international priority toxic pollutant. It also comprises one of the primary constituents of dental amalgam fillings. Even though dental mercury amalgams have been used for almost two centuries, its safety has never been tested or proven in the United States by any regulatory agency. There has been an ongoing debate regarding the safety of its use since 1845, and many studies conclude that its use exposes patients to troublesome toxicity. In this review, we present in an objective way the danger of dental amalgam to human health based on current knowledge. This dilemma is addressed in terms of an integrated toxicological approach by focusing on four mayor issues to show how these interrelate to create the whole picture: (1) the irrefutable constant release of mercury vapor from dental amalgams which is responsible for individual chronic exposure, (2) the evidence of organic mercury formation from dental amalgam in the oral cavity, (3) the effect of mercury exposure on gene regulation in human cells which supports the intrinsic genetic susceptibility to toxicant and, finally, (4) the availability of recent epidemiological data supporting the link of dental amalgams to diseases such as Alzheimer's and Parkinson.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph16061036