Impact of Fgf10 deficiency on pulmonary vasculature formation in a mouse model of bronchopulmonary dysplasia

Abstract Bronchopulmonary dysplasia (BPD), characterized by alveoli simplification and dysmorphic pulmonary microvasculature, is a chronic lung disease affecting prematurely born infants. Pulmonary hypertension (PH) is an important BPD feature associated with morbidity and mortality. In human BPD, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2019-05, Vol.28 (9), p.1429-1444
Hauptverfasser: Chao, Cho-Ming, Moiseenko, Alena, Kosanovic, Djuro, Rivetti, Stefano, El Agha, Elie, Wilhelm, Jochen, Kampschulte, Marian, Yahya, Faady, Ehrhardt, Harald, Zimmer, Klaus-Peter, Barreto, Guillermo, Rizvanov, Albert A, Schermuly, Ralph T, Reiss, Irwin, Morty, Rory E, Rottier, Robbert J, Bellusci, Saverio, Zhang, Jin-San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Bronchopulmonary dysplasia (BPD), characterized by alveoli simplification and dysmorphic pulmonary microvasculature, is a chronic lung disease affecting prematurely born infants. Pulmonary hypertension (PH) is an important BPD feature associated with morbidity and mortality. In human BPD, inflammation leads to decreased fibroblast growth factor 10 (FGF10) expression but the impact on the vasculature is so far unknown. We used lungs from Fgf10+/− versus Fgf10+/+ pups to investigate the effect of Fgf10 deficiency on vascular development in normoxia (NOX) and hyperoxia (HOX, BPD mouse model). To assess the role of fibroblast growth factor receptor 2b (Fgfr2b) ligands independently of early developmentaldefects, we used an inducible double transgenic system in mice allowing inhibition of Fgfr2b ligands activity. Using vascular morphometry, we quantified the pathological changes. Finally, we evaluated changes in FGF10, surfactant protein C (SFTPC), platelet endothelial cell adhesion molecule (PECAM) and alpha-smooth muscle actin 2 (α-SMA) expression in human lung samples from patients suffering from BPD. In NOX, no major difference in the lung vasculature between Fgf10+/− and control pups was detected. In HOX, a greater loss of blood vessels in Fgf10+/− lungs is associated with an increase of poorly muscularized vessels. Fgfr2b ligands inhibition postnatally in HOX is sufficient to decrease the number of blood vessels while increasing the level of muscularization, suggesting a PH phenotype. BPD lungs exhibited decreased FGF10, SFTPC and PECAM but increased α-SMA. Fgf10 deficiency-associated vascular defects are enhanced in HOX and could represent an additional cause of morbidity in human patients with BPD.
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/ddy439