Timing of the Brunhes-Matuyama transition constrained by U-series disequilibrium

U-series disequilibrium measurements carried out on thermogenic travertine samples from a 12.6 m-long core and a 10 m-thick section from southeastern Morocco yielded finite ages ranging from 500 ka to the present-day, as well as two clusters determined to be older than 500 ka. The calculation of ini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-04, Vol.9 (1), p.6039-6039, Article 6039
Hauptverfasser: Ghaleb, Bassam, Falguères, Christophe, Carlut, Julie, Pozzi, Jean-Pierre, Mahieux, Geoffroy, Boudad, Larbi, Rousseau, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:U-series disequilibrium measurements carried out on thermogenic travertine samples from a 12.6 m-long core and a 10 m-thick section from southeastern Morocco yielded finite ages ranging from 500 ka to the present-day, as well as two clusters determined to be older than 500 ka. The calculation of initial 234 U/ 238 U activity ratios in all samples younger than 500 ka shows high, reasonably constant values, with an average of 5.172 ± 0.520 (one standard deviation). Assuming that this value prevailed for periods older than 500 ka, we derived ages of up to approximately 1.2 Ma using the initial 234 U excess decay. Our results indicate that the two older clusters have ages of 776 ± 14 ka for samples from between 8 and 10.1 m and 1173 ± 22 ka for deeper samples respectively. The palaeomagnetic record of the core shows normal polarity inclinations from the surface to around 9 m followed by reverse polarity inclination and antipodal declinations. The inversion is attributed to the Brunhes-Matuyama transition. 234 U excess ages for the interval corresponding to the part of the core where the polarity inversion occurred are in the range of 735 ± 51 to 794 ± 54 ka, with an arithmetic mean value of 776 ± 14 ka for the B-M transition. This age is in good agreement with that determined previously using other dating methods.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-42567-2