Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic
The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin,...
Gespeichert in:
Veröffentlicht in: | Communications biology 2019-04, Vol.2 (1), p.131, Article 131 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits glutamine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the pervasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The
arsN1
gene, widely distributed in bacterial arsenic resistance (
ars
) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1
N
-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors.
Nadar, Chen, Dheeman et al. show that arsinothricin, an arsenic-containing non- proteinogenic amino acid analog of glutamate, is an effective broad-spectrum antibiotic through inhibition of glutamine synthetase. This study suggests a possibility of developing a new class of antimicrobials that thwart microbial resistance to arsinothricin. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-019-0365-y |