Single-cell quantification of the concentrations and dissociation constants of endogenous proteins

Kinetic simulation is a useful approach for elucidating complex cell-signaling systems. The numerical simulations required for kinetic modeling in live cells critically require parameters such as protein concentrations and dissociation constants (Kd). However, only a limited number of parameters hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-04, Vol.294 (15), p.6062-6072
Hauptverfasser: Komatsubara, Akira T., Goto, Yuhei, Kondo, Yohei, Matsuda, Michiyuki, Aoki, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kinetic simulation is a useful approach for elucidating complex cell-signaling systems. The numerical simulations required for kinetic modeling in live cells critically require parameters such as protein concentrations and dissociation constants (Kd). However, only a limited number of parameters have been measured experimentally in living cells. Here we describe an approach for quantifying the concentration and Kd of endogenous proteins at the single-cell level with CRISPR/Cas9-mediated knock-in and fluorescence cross-correlation spectroscopy. First, the mEGFP gene was knocked in at the end of the mitogen-activated protein kinase 1 (MAPK1) gene, encoding extracellular signal-regulated kinase 2 (ERK2), through homology-directed repair or microhomology-mediated end joining. Next, the HaloTag gene was knocked in at the end of the ribosomal S6 kinase 2 (RSK2) gene. We then used fluorescence correlation spectroscopy to measure the protein concentrations of endogenous ERK2-mEGFP and RSK2-HaloTag fusion constructs in living cells, revealing substantial heterogeneities. Moreover, fluorescence cross-correlation spectroscopy analyses revealed temporal changes in the apparent Kd values of the binding between ERK2-mEGFP and RSK2-HaloTag in response to epidermal growth factor stimulation. Our approach presented here provides a robust and efficient method for quantifying endogenous protein concentrations and dissociation constants in living cells.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.RA119.007685