HAI-2 as a novel inhibitor of plasmin represses lung cancer cell invasion and metastasis
Background Dysregulation of pericellular proteolysis usually accounts for cancer cell invasion and metastasis. Isolation of a cell-surface protease system for lung cancer metastasis is an important issue for mechanistic studies and therapeutic target identification. Methods Immunohistochemistry of a...
Gespeichert in:
Veröffentlicht in: | British journal of cancer 2019-03, Vol.120 (5), p.499-511 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Dysregulation of pericellular proteolysis usually accounts for cancer cell invasion and metastasis. Isolation of a cell-surface protease system for lung cancer metastasis is an important issue for mechanistic studies and therapeutic target identification.
Methods
Immunohistochemistry of a tissue array (
n
= 64) and TCGA database (
n
= 255) were employed to assess the correlation between serine protease inhibitors (SPIs) and lung adenocarcinoma progression. The role of SPI in cell motility was examined using transwell assays. Pulldown and LC/MS/MS were performed to identify the SPI-modulated novel protease(s). A xenografted mouse model was harnessed to demonstrate the role of the SPI in lung cancer metastasis.
Results
Hepatocyte growth factor activator inhibitor-2 (HAI-2) was identified to be downregulated following lung cancer progression, which was related to poor survival and tumour invasion. We further isolated a serum-derived serine protease, plasmin, to be a novel target of HAI-2. Downregulation of HAI-2 promotes cell surface plasmin activity, EMT, and cell motility. HAI-2 can suppress plasmin-mediated activations of HGF and TGF-β1, EMT and cell invasion. In addition, downregulated HAI-2 increased metastasis of lung adenocarcinoma via upregulating plasmin activity.
Conclusion
HAI-2 functions as a novel inhibitor of plasmin to suppress lung cancer cell motility, EMT and metastasis. |
---|---|
ISSN: | 0007-0920 1532-1827 |
DOI: | 10.1038/s41416-019-0400-2 |