The mevalonate coordinates energy input and cell proliferation

The mevalonate pathway is known for the synthesis of cholesterol, but recent studies have reported that it also controls Hippo signaling, which is critical for the regulation of organ size and tumorigenesis. Here, we discover that the suppression of the mevalonate pathway inhibits the growth and pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2019-04, Vol.10 (4), p.327-327, Article 327
Hauptverfasser: Gong, Li, Xiao, Yi, Xia, Fan, Wu, Pei, Zhao, Tingting, Xie, Shulin, Wang, Ran, Wen, Qiaocheng, Zhou, Wensu, Xu, Huilan, Zhu, Lingyan, Zheng, Zeqi, Yang, Tianlun, Chen, Zihua, Duan, Qiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mevalonate pathway is known for the synthesis of cholesterol, but recent studies have reported that it also controls Hippo signaling, which is critical for the regulation of organ size and tumorigenesis. Here, we discover that the suppression of the mevalonate pathway inhibits the growth and proliferation of colon cancer cell lines. The results of transcriptomic and proteomic assays suggested that the mevalonate pathway controls multiple signaling pathways relevant to cell proliferation, and the results were further confirmed using western blot, PCR, and immunofluorescence assays. As cell proliferation is an energy-consuming process, we postulate that the mevalonate pathway may also control nutrient uptake to coordinate the processes of energy supply and cell proliferation. Here, we found that lovastatin, a mevalonate pathway inhibitor, suppresses glucose and amino acid uptake and lactate acid production. More importantly, mevalonic acid itself is sufficient to promote glucose uptake by colon cancer cells. In addition, we found that colon cancer tissues displayed a higher expression of mevalonate pathway enzymes, which may promote cell growth and stimulate energy uptake. Together, our findings establish the mevalonate pathway as a critical regulator in coordinating energy input and cell proliferation.
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-019-1544-y