Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors

Low-dimensional nanomaterials, such as one-dimensional (1D) nanomaterials and layered 2D materials, have exhibited significance for their respective unique electronic and optoelectronic properties. Here we show that a mixed-dimensional heterostructure with building blocks from multiple dimensions wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-04, Vol.116 (14), p.6586-6593
Hauptverfasser: Zhang, Ke, Wei, Yang, Zhang, Jin, Ma, He, Yang, Xinhe, Lu, Gaotian, Zhang, Kenan, Li, Qunqing, Jiang, Kaili, Fan, Shoushan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-dimensional nanomaterials, such as one-dimensional (1D) nanomaterials and layered 2D materials, have exhibited significance for their respective unique electronic and optoelectronic properties. Here we show that a mixed-dimensional heterostructure with building blocks from multiple dimensions will present a synergistic effect on photodetection. A carbon nanotube (CNT)–WSe₂–graphene photodetector is representative on this issue. Its spatial resolution can be electrically switched between high-resolution mode (HRM) and low-resolution mode (LRM) revealed by scanning photocurrent microscopy (SPCM). The reconfigurable spatial resolution can be attributed to the asymmetric geometry and the gate-tunable Fermi levels of these low-dimensional materials. Significantly, an interference fringe with 334 nm in period was successfully discriminated by the device working at HRM, confirming the efficient electrical control. Electrical control of spatial resolution in CNT–WSe₂–graphene devices reveals the potential of the mixed-dimensional architectures in future nanoelectronics and nano-optoelectronics.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1817229116