Role of corticosterone in anxiety- and depressive-like behavior and HPA regulation following prenatal alcohol exposure
Prenatal alcohol exposure (PAE) is known to cause dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyperresponsivity to stressors. Dysregulation of the HPA axis plays a role in vulnerability to stress-related disorders, such as anxiety and depression. Thus, the effects of PA...
Gespeichert in:
Veröffentlicht in: | Progress in neuro-psychopharmacology & biological psychiatry 2019-03, Vol.90, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prenatal alcohol exposure (PAE) is known to cause dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyperresponsivity to stressors. Dysregulation of the HPA axis plays a role in vulnerability to stress-related disorders, such as anxiety and depression. Thus, the effects of PAE on HPA function may result in increased vulnerability to the effects of stress and, in turn, lead to the development of stress-related disorders. Indeed, individuals prenatally exposed to alcohol have an increased risk of developing anxiety and depression. However, it is unclear whether hypersecretion of corticosterone (CORT) in response to stress per se is involved with mediating differential effects of stress in PAE and control animals. To investigate the role of CORT in mediating effects of stress in both adult females and males following PAE, adrenalectomy with CORT replacement (ADXR) was utilized to produce similar CORT levels among prenatal treatment groups before exposure to chronic unpredictable stress (CUS). Anxiety-like behavior was evaluated using the open field and elevated plus maze, and depressive-like behavior was examined in the forced swim test. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA expression was assessed in the medial prefrontal cortex (mPFC), amygdala, and hippocampal formation. Under the non-CUS condition, PAE alone differentially altered anxiety-like behavior in sham but not ADXR females and males, with females showing decreased anxiety-like behavior but males exhibiting increased anxiety-like behavior compared to their control counterparts. There were no effects of PAE alone on depressive-like in females or males. PAE also decreased GR mRNA expression in the hippocampal formation in females but had no effects on MR or GR mRNA expression in any brain region in males. CUS had differential effects on anxiety- and depressive-like behavior in PAE and control animals, and these effects were sex dependent. Importantly, ADXR unmasked differences between PAE and control animals, demonstrating that CORT may play a differential role in modulating behavior and HPA activity/regulation in PAE and control animals, and may do so in a sex-dependent manner.
•PAE males may have decreased sensitivity to negative feedback by corticosterone.•Differential effects of PAE and CUS are sex dependent.•Differential role of corticosterone in modulating PAE effects. |
---|---|
ISSN: | 0278-5846 1878-4216 |
DOI: | 10.1016/j.pnpbp.2018.10.008 |