Natural killer cell monitoring in cutaneous melanoma - new dynamic biomarker

Melanoma is responsible for most skin cancer deaths in humans. The immune system plays a major role in regulating tumor cell proliferation by initiating defence responses against tumor aggression. Research on murine cancer models allow for a better understanding of immune response in malignancies, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology letters 2019-05, Vol.17 (5), p.4197-4206
Hauptverfasser: Isvoranu, Gheorghița, Surcel, Mihaela, Huică, Radu-Ionuț, Munteanu, Adriana Narcisa, Pîrvu, Ioana Ruxandra, Ciotaru, Dan, Constantin, Carolina, Bratu, Ovidiu, Neagu, Monica, Ursaciuc, Cornel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melanoma is responsible for most skin cancer deaths in humans. The immune system plays a major role in regulating tumor cell proliferation by initiating defence responses against tumor aggression. Research on murine cancer models allow for a better understanding of immune response in malignancies, revealing specific changes of the immune status in the presence of tumors. Melanoma resistance to conventional therapies and its high immunogenicity justify the development of new therapies. These features reinforce melanoma as a suitable model for studying antitumor immunity. Recent findings on NK cell activation in cancer patients indicate that several important parameters, such as tumor capacity to modulate the function and phenotype of NK cells, require consideration for the choice of an NK-based therapy. In this study, we investigated T-CD4 and T-CD8 lymphocytes, B lymphocytes and NK cells in peripheral blood and spleen cells suspension from melanoma-bearing mice compared to healthy controls in order to assess the potential for tumor growth-promoting immunosuppression. Our results indicate that in a melanoma-bearing mouse model the percentage of NK cells in spleen is reduced and that their phenotype is different compared to control mouse NK cells.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2019.10069