Thermally controllable Mie resonances in a water-based metamaterial

Active control of metamaterial properties is of great significance for designing miniaturized and versatile devices in practical engineering applications. Taking advantage of the highly temperature-dependent permittivity of water, we demonstrate a water-based metamaterial comprising water cubes with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-04, Vol.9 (1), p.5417-5417, Article 5417
Hauptverfasser: Sun, Xiaqing, Fu, Quanhong, Fan, Yuancheng, Wu, Hongjing, Qiu, Kepeng, Yang, Ruisheng, Cai, Weiqi, Zhang, Nan, Zhang, Fuli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active control of metamaterial properties is of great significance for designing miniaturized and versatile devices in practical engineering applications. Taking advantage of the highly temperature-dependent permittivity of water, we demonstrate a water-based metamaterial comprising water cubes with thermally tunable Mie resonances. The dynamic tunability of the water-based metamaterial was investigated via numerical simulations and experiments. A water cube exhibits both magnetic and electric response in the frequency range of interest. The magnetic response is primarily magnetic dipole resonance, while the electric response is a superposition of electric dipole resonance and a smooth Fabry–Pérot background. Using temporal coupled-mode theory (TCMT), the role of direct scattering is evaluated and the Mie resonance modes are analyzed. As the temperature of water cube varies from 20 °C to 80 °C, the magnetic and electric resonance frequencies exhibit obvious blue shifts of 0.10 and 0.14 GHz, respectively.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-41681-5