Selection Procedures for the Largest Lyapunov Exponent in Gait Biomechanics

The present study was aimed at investigating the effectiveness of the Wolf et al. (LyE_W) and Rosenstein et al. largest Lyapunov Exponent (LyE_R) algorithms to differentiate data sets with distinctly different temporal structures. The three-dimensional displacement of the sacrum was recorded from he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2019-04, Vol.47 (4), p.913-923
Hauptverfasser: Raffalt, Peter C., Kent, Jenny A., Wurdeman, Shane R., Stergiou, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study was aimed at investigating the effectiveness of the Wolf et al. (LyE_W) and Rosenstein et al. largest Lyapunov Exponent (LyE_R) algorithms to differentiate data sets with distinctly different temporal structures. The three-dimensional displacement of the sacrum was recorded from healthy subjects during walking and running at two speeds; one low speed close to the preferred walking speed and one high speed close to the preferred running speed. LyE_R and LyE_W were calculated using four different time series normalization procedures. The performance of the algorithms were evaluated based on their ability to return relative low values for slow walking and fast running and relative high values for fast walking and slow running. Neither of the two algorithms outperformed the other; however, the effectiveness of the two algorithms was highly dependent on the applied time series normalization procedure. Future studies using the LyE_R should normalize the time series to a fixed number of strides and a fixed number of data points per stride or data points per time series while the LyE_W should be applied to time series normalized to a fixed number of data points or a fixed number of strides.
ISSN:0090-6964
1573-9686
1573-9686
DOI:10.1007/s10439-019-02216-1