Stabilisation of tetragonal FeCo structure with high magnetic anisotropy by the addition of V and N elements

The development of magnetic materials with high saturation magnetization ( M s ) and uniaxial magnetic anisotropy ( K u ) is required for the realisation of high-performance permanent magnets capable of reducing the power consumption of motors and data storage devices. Although FeCo-based materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-03, Vol.9 (1), p.5248-5248, Article 5248
Hauptverfasser: Hasegawa, Takashi, Niibori, Takuya, Takemasa, Yusuke, Oikawa, Mitsuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of magnetic materials with high saturation magnetization ( M s ) and uniaxial magnetic anisotropy ( K u ) is required for the realisation of high-performance permanent magnets capable of reducing the power consumption of motors and data storage devices. Although FeCo-based materials with the body-centred cubic structure (bcc) exhibit the highest M s values among various transition metal alloys, their low K u magnitudes makes them unsuitable for permanent magnets. Recent first-principles calculations and experimental studies revealed that the epitaxial FeCo thin films with the body-centred tetragonal (bct) structure and thicknesses of several nanometres exhibited K u values of 10 6  J·m −3 due to epitaxial stress, which required further stabilisation. In this work, the FeCo lattice stabilised via VN addition were characterised by high K u magnitudes exceeding 10 6  J·m −3 . The obtained bct structure remained stable even for the films with thicknesses of 100 nm deposited on an amorphous substrate, suggesting its possible use in bulk systems.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-41825-7