Identification of a Fifth Antibacterial Toxin Produced by a Single Bacteroides fragilis Strain

are the most abundant Gram-negative bacteria of the healthy human colonic microbiota, comprising nearly 50% of the colonic bacteria in many individuals. Numerous species and strains of gut are present simultaneously at high concentrations in this ecosystem. Studies are revealing that gut has numerou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bacteriology 2019-04, Vol.201 (8)
Hauptverfasser: Shumaker, Andrew M, Laclare McEneany, Valentina, Coyne, Michael J, Silver, Pamela A, Comstock, Laurie E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:are the most abundant Gram-negative bacteria of the healthy human colonic microbiota, comprising nearly 50% of the colonic bacteria in many individuals. Numerous species and strains of gut are present simultaneously at high concentrations in this ecosystem. Studies are revealing that gut has numerous antibacterial weapons to antagonize closely related members. In this study, we identify a new diffusible antibacterial toxin produced by 638R, designated BSAP-4. This is the fifth antibacterial toxin produced by this strain and the second toxin of this strain with a membrane attack complex/perforin domain (MACPF). We identify the target molecule of sensitive cells as a β-barrel outer membrane protein (OMP) with calycin-like domains. As with other MACPF toxins, the gene encoding the target in sensitive strains is in the same genetic region as in producing strains. A comparison of strains showed there are two sensitive variants of this OMP that are 87% similar to each other and 50% similar to the resistant OMP. Unlike other MACPF toxins, there are numerous strains that harbor the resistant OMP without Several OMP variants from strains that are BSAP-4 resistant under the conditions of our assay confer BSAP-4 sensitivity to when constitutively expressed. Using a reporter assay, we show that the BSAP-4 receptor gene is differentially expressed in sensitive and resistant strains leading to apparent BSAP-4 resistance under the conditions of our assay, despite harboring the BSAP-4 target gene. The intestinal microbiota is a diverse microbial ecosystem that provides numerous benefits to humans. The factors that govern its establishment and stability are just beginning to be elucidated. Identification and characterization of antimicrobial toxins produced by its members and their killing range are essential to understanding the role of antagonism in community composition and stability. Here, we identify a fifth antimicrobial toxin produced by a single strain and identify its target. The finding of such a large number of toxins that antagonize competing members suggests that this feature substantially contributes to the fitness of these bacteria. In addition, these toxins may have applications in genetically engineered gut bacteria to allow engraftment or to antagonize a potentially pathogenic member.
ISSN:0021-9193
1098-5530
DOI:10.1128/JB.00577-18