Differential YAP expression in glioma cells induces cell competition and promotes tumorigenesis

Intratumor heterogeneity associates with cancer progression and may account for a substantial portion of therapeutic resistance. Although extensive studies have focused on the origin of the heterogeneity, biological interactions between heterogeneous malignant cells within a tumor are largely unexpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2019-03, Vol.132 (5)
Hauptverfasser: Liu, Zhijun, Yee, Patricia P, Wei, Yiju, Liu, Zhenqiu, Kawasawa, Yuka Imamura, Li, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intratumor heterogeneity associates with cancer progression and may account for a substantial portion of therapeutic resistance. Although extensive studies have focused on the origin of the heterogeneity, biological interactions between heterogeneous malignant cells within a tumor are largely unexplored. Glioblastoma (GBM) is the most aggressive primary brain tumor. Here, we found that the expression of Yes-associated protein (YAP, also known as YAP1) is intratumorally heterogeneous in GBM. In a xenograft mouse model, differential YAP expression in glioma cells promotes tumorigenesis and leads to clonal dominance by cells expressing more YAP. Such clonal dominance also occurs when cells reach confluence in the two-dimensional culture condition or grow into tumor spheroids. During this process, growth of the dominant cell population is enhanced. In the tumor spheroid, such enhanced growth is accompanied by increased apoptosis in cells expressing less YAP. The cellular interaction during clonal dominance appears to be reminiscent of cell competition. RNA-seq analysis suggests that this interaction induces expression of tumorigenic genes, which may contribute to the enhanced tumor growth. These results suggest that tumorigenesis benefits from competitive interactions between heterogeneous tumor cells.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.225714