Epoxy-Based Shape-Memory Actuators Obtained via Dual-Curing of Off-Stoichiometric "Thiol⁻Epoxy" Mixtures

In this work, epoxy-based shape-memory actuators have been developed by taking advantage of the sequential dual-curing of off-stoichiometric "thiol⁻epoxy" systems. Bent-shaped designs for flexural actuation were obtained thanks to the easy processing of these materials in the intermediate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2017-03, Vol.9 (3), p.113
Hauptverfasser: Belmonte, Alberto, Russo, Claudio, Ambrogi, Veronica, Fernández-Francos, Xavier, De la Flor, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, epoxy-based shape-memory actuators have been developed by taking advantage of the sequential dual-curing of off-stoichiometric "thiol⁻epoxy" systems. Bent-shaped designs for flexural actuation were obtained thanks to the easy processing of these materials in the intermediate stage (after the first curing process), and successfully fixed through the second curing process. The samples were programmed into a flat temporary-shape and the recovery-process was analyzed in unconstrained, partially-constrained and fully-constrained conditions using a dynamic mechanical analyzer (DMA). Different "thiol⁻epoxy" systems and off-stoichiometric ratios were used to analyze the effect of the network structure on the actuation performance. The results evidenced the possibility to take advantage of the flexural recovery as a potential actuator, the operation of which can be modulated by changing the network structure and properties of the material. Under unconstrained-recovery conditions, faster and narrower recovery-processes (an average speed up to 80%/min) are attained by using materials with homogeneous network structure, while in partially- or fully-constrained conditions, a higher crosslinking density and the presence of crosslinks of higher functionality lead to a higher amount of energy released during the recovery-process, thus, increasing the work or the force released. Finally, an easy approach for the prediction of the work released by the shape-memory actuator has been proposed.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym9030113