Gene expression profile analysis of ENO1 knockdown in gastric cancer cell line MGC-803

Gastric cancer (GC) is the third leading cause of cancer-associated mortality. In a previous study, we identified that α-enolase (ENO1) promoted cell migration in GC, but the underlying molecular mechanisms remain to be fully elucidated. In the present study, small interfering RNAs were identified t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology letters 2019-04, Vol.17 (4), p.3881-3889
Hauptverfasser: Huang, Zhigang, Lin, Bode, Pan, Haiyan, Du, Jinlin, He, Rongwei, Zhang, Shizhuo, Ouyang, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gastric cancer (GC) is the third leading cause of cancer-associated mortality. In a previous study, we identified that α-enolase (ENO1) promoted cell migration in GC, but the underlying molecular mechanisms remain to be fully elucidated. In the present study, small interfering RNAs were identified to interfere with ENO1 expression. The cDNA expression profiling was performed using an Affymetrix mRNA array platform to identify genes that may be associated with ENO1 in human GC cell line MGC-803. The differentially expressed genes (DEGs) were identified using the reverse transcription-quantitative polymerase chain reaction, followed by a series of bioinformatic analyses. As a result, there were 448 DEGs, among which 183 (40.85%) were downregulated. The most significant functional terms for the DEGs were the nuclear lumen for cell components (P=2.83×10 ), transcription for biological processes (P=3.7×10 ) and transcription factor activity for molecular functions (P=1.16×10 ). In total, six significant pathways were enriched, including the most common cancer-associated forkhead box O signaling pathway (P=0.0077), microRNAs in cancer (P=0.0183) and the cAMP signaling pathway (P=0.0415). Furthermore, a network analysis identified three hub genes (HUWE1, PPP1CB and HSPA4), which were all involved in tumor metastasis. Taken together, the DEGs, significant pathways and hub genes identified in the present study shed some light on the molecular mechanisms of ENO1 involved in the pathogenesis of GC.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2019.10053