Targeting Processive Transcription Elongation via SEC Disruption for MYC-Induced Cancer Therapy

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2018-10, Vol.175 (3), p.766-779.e17
Hauptverfasser: Liang, Kaiwei, Smith, Edwin R., Aoi, Yuki, Stoltz, Kristen L., Katagi, Hiroaki, Woodfin, Ashley R., Rendleman, Emily J., Marshall, Stacy A., Murray, David C., Wang, Lu, Ozark, Patrick A., Mishra, Rama K., Hashizume, Rintaro, Schiltz, Gary E., Shilatifard, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer. [Display omitted] •Discovery of small-molecule inhibitors of SEC and transcription elongation by Pol II•KL-1 and KL-2 disrupt the cyclin T1-AFF4 interaction within SEC•SEC inhibitors attenuate SEC-dependent rapid transcriptional responses•MYC transcriptional programs are inhibited by SEC chemical disruptors KL-1/KL-2 Targeting transcriptional elongation with small-molecule inhibitors of the super elongation complex blocks transcriptional programs driven by the oncogene MYC
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2018.09.027