Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors

We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2017-07, Vol.60 (13), p.5816-5825
Hauptverfasser: Choi, Jun Yong, Fuerst, Rita, Knapinska, Anna M, Taylor, Alexander B, Smith, Lyndsay, Cao, Xiaohang, Hart, P. John, Fields, Gregg B, Roush, William R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.7b00514