Huge Enhancement of Luminescence from a Coaxial-Like Heterostructure of Poly(3-methylthiophene) and Au

Recently, the light-matter interaction at nanoscale has attracted great interest from physicists, chemists and material scientists, as it gives peculiar optical properties that couldn't be observed at the bulk scale. The synthesis and characterization of organic-inorganic heterostructures formi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2018-04, Vol.10 (4), p.414
Hauptverfasser: Kim, Bo-Hyun, Lee, Hojin, Kim, Do Hyoung, Kim, Seokho, Choi, Jinho, Lee, Gil Sun, Park, Dong Hyuk, Lee, Sunjong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, the light-matter interaction at nanoscale has attracted great interest from physicists, chemists and material scientists, as it gives peculiar optical properties that couldn't be observed at the bulk scale. The synthesis and characterization of organic-inorganic heterostructures forming quantum dots, nanowires or nanotubes provide opportunities to understand their photophysical mechanism and to apply optoelecronic devices. Herein, we report a huge enhanced luminescence in a coaxial-like heterostructured poly (3-methylthiophene) (P3MT) with Au. We electrochemically synthesized P3MT nanowires (NWs) on a nanoporous template, and sequentially deposited Au on the surface of P3MT NWs. The diameter of heterostructured P3MT/Au NWs was about 200 nm, where the cladding-shape Au were about 10 nm. The visible range absorbance, with two new absorption peaks of P3MT/Au NWs, was significantly increased compared with that of P3MT NWs. Accordingly, the photoluminescence (PL) of a P3MT/Au NW was enormously increased; up to 170 times compared to that of P3MT NWs. More interestingly, an unexpected enhancement of PL was observed from cross-junction point of P3MT/Au NWs. The abnormal PL properties of P3MT/Au NWs were attributed to the charge transfer and the surface plasmon resonance between the cladding-shape Au and the core-shape P3MT, which resulted in the enhanced quantum yield. This incites us to reconsider the light-matter interaction in polymer-metal hybrid structures applicable for high-performance optoelectronic devices.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym10040414