Endogenous advanced glycation end products in pancreatic islets after short-term carbohydrate intervention in obese, diabetes-prone mice

Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition & diabetes 2019-03, Vol.9 (1), p.9, Article 9
Hauptverfasser: Kehm, Richard, Rückriemen, Jana, Weber, Daniela, Deubel, Stefanie, Grune, Tilman, Höhn, Annika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-term carbohydrate feeding in animal models. Pancreatic islets play a key role in glucose metabolism; thus, their susceptibility to glycation reactions due to high amounts of dietary carbohydrates is of special interest. Therefore, diabetes-prone New Zealand Obese (NZO) mice received either a carbohydrate-free, high-fat diet (CFD) for 11 weeks or were additionally fed with a carbohydrate-rich diet (CRD) for 7 days. In the CRD group, hyperglycemia and hyperinsulinemia were induced accompanied by increasing plasma 3-nitrotyrosine (3-NT) levels, higher amounts of 3-NT and inducible nitric oxide synthase (iNOS) within pancreatic islets. Furthermore, N -ε-carboxymethyllysine (CML) was increased in the plasma of CRD-fed NZO mice and substantially higher amounts of arg-pyrimidine, pentosidine and the receptor for advanced glycation end products (RAGE) were observed in pancreatic islets. These findings indicate that a short-term intervention with carbohydrates is sufficient to form endogenous AGEs in plasma and pancreatic islets of NZO mice under hyperglycemic and inflammatory conditions.
ISSN:2044-4052
2044-4052
DOI:10.1038/s41387-019-0077-x