Dynamic Regulation of Level Set Parameters Using 3D Convolutional Neural Network for Liver Tumor Segmentation

Segmentation of liver tumors plays an important role in the choice of therapeutic strategies for liver disease and treatment monitoring. In this paper, we generalize the process of a level set with a novel algorithm of dynamic regulation to energy functional parameters. The presented method is fully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2019-01, Vol.2019 (2019), p.1-17
Hauptverfasser: Deng, Zhuofu, Zhu, Zhiliang, Guo, Qingzhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Segmentation of liver tumors plays an important role in the choice of therapeutic strategies for liver disease and treatment monitoring. In this paper, we generalize the process of a level set with a novel algorithm of dynamic regulation to energy functional parameters. The presented method is fully automatic once the tumor has been detected. First, a 3D convolutional neural network with dense layers for classification is used to estimate current contour location relative to the tumor boundary. Second, the output 3D CNN probabilities can dynamically regulate parameters of the level set functional over the process of segmentation. Finally, for full automation, appropriate initializations and local window size are generated based on the current contour position probabilities. We demonstrate the proposed method on the dataset of MICCAI 2017 LiTS Challenge and 3DIRCADb that include low contrast and heterogeneous tumors as well as noisy images. To illustrate the strength of our method, we evaluated it against the state-of-the-art methods. Compared with the level set framework with fixed parameters, our method performed better significantly with an average DICE improvement of 0.15. We also analyzed a challenging dataset 3DIRCADb of tumors and obtained a competitive DICE of 0.85±0.06 with the proposed method.
ISSN:2040-2295
2040-2309
DOI:10.1155/2019/4321645