In Vivo Investigation into Effectiveness of Fe₃O₄/PLLA Nanofibers for Bone Tissue Engineering Applications
Fe₃O₄ nanoparticles were loaded into poly-l-lactide (PLLA) with concentrations of 2% and 5%, respectively, using an electrospinning method. In vivo animal experiments were then performed to evaluate the potential of the Fe₃O₄/PLLA nanofibrous material for bone tissue engineering applications. Bony d...
Gespeichert in:
Veröffentlicht in: | Polymers 2018-07, Vol.10 (7), p.804 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fe₃O₄ nanoparticles were loaded into poly-l-lactide (PLLA) with concentrations of 2% and 5%, respectively, using an electrospinning method. In vivo animal experiments were then performed to evaluate the potential of the Fe₃O₄/PLLA nanofibrous material for bone tissue engineering applications. Bony defects with a diameter of 4 mm were prepared in rabbit tibias. Fe₃O₄/PLLA nanofibers were grafted into the drilled defects and histological examination and computed tomography (CT) image detection were performed after an eight-week healing period. The histological results showed that the artificial bony defects grafted with Fe₃O₄/PLLA nanofibers exhibited a visibly higher bone healing activity than those grafted with neat PLLA. In addition, the quantitative results from CT images revealed that the bony defects grafted with 2% and 5% Fe₃O₄/PLLA nanofibers, respectively, showed 1.9- and 2.3-fold increases in bone volume compared to the control blank sample. Overall, the results suggest that the Fe₃O₄/PLLA nanofibers fabricated in this study may serve as a useful biomaterial for future bone tissue engineering applications. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym10070804 |