Embedding Carbon Dots in Superabsorbent Polymers for Additive Manufacturing

A type of orange carbon dots (O-CDs) synthesized via an ultrasonication route with citric acid and 1,2-phenylenediamine as precursors was embedded into sodium polyacrylate (SPA) as the ink for 3D printing. Characterizations of these spherical O-CDs revealed an ultra-small size (~2 nm) and excitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2018-08, Vol.10 (8), p.921
Hauptverfasser: Zhou, Yiqun, Mintz, Keenan J, Oztan, Cagri Y, Hettiarachchi, Sajini D, Peng, Zhili, Seven, Elif S, Liyanage, Piumi Y, De La Torre, Sabrina, Celik, Emrah, Leblanc, Roger M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A type of orange carbon dots (O-CDs) synthesized via an ultrasonication route with citric acid and 1,2-phenylenediamine as precursors was embedded into sodium polyacrylate (SPA) as the ink for 3D printing. Characterizations of these spherical O-CDs revealed an ultra-small size (~2 nm) and excitation-independent, but solvent dependent, emission. The O-CDs were evenly distributed with low degree of aggregation in sodium polyacrylate (SPA), which was achieved due to the property that SPA can absorb water together with O-CDs. The 3D printed photoluminescent objective with the ink revealed a great potential for high yield application of these materials for additive manufacturing. This also represents the first time, bare CDs have been reported as a photoluminescent material in 3D printing, as well as the first time SPA has been reported as a material for 3D printing.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym10080921