Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data

t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2019-03, Vol.16 (3), p.243-245
Hauptverfasser: Linderman, George C., Rachh, Manas, Hoskins, Jeremy G., Steinerberger, Stefan, Kluger, Yuval
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps . FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes.
ISSN:1548-7091
1548-7105
DOI:10.1038/s41592-018-0308-4