Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data
t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populatio...
Gespeichert in:
Veröffentlicht in: | Nature methods 2019-03, Vol.16 (3), p.243-245 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | t
-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at
https://github.com/KlugerLab/FIt-SNE
and
https://github.com/KlugerLab/t-SNE-Heatmaps
.
FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/s41592-018-0308-4 |