Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing – a deep learning approach

Macroscopic fluorescence lifetime imaging (MFLI) via compressed sensed (CS) measurements enables efficient and accurate quantification of molecular interactions in vivo over a large field of view (FOV). However, the current data-processing workflow is slow, complex and performs poorly under photon-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2019-03, Vol.8 (1), p.26-26, Article 26
Hauptverfasser: Yao, Ruoyang, Ochoa, Marien, Yan, Pingkun, Intes, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macroscopic fluorescence lifetime imaging (MFLI) via compressed sensed (CS) measurements enables efficient and accurate quantification of molecular interactions in vivo over a large field of view (FOV). However, the current data-processing workflow is slow, complex and performs poorly under photon-starved conditions. In this paper, we propose Net-FLICS, a novel image reconstruction method based on a convolutional neural network (CNN), to directly reconstruct the intensity and lifetime images from raw time-resolved CS data. By carefully designing a large simulated dataset, Net-FLICS is successfully trained and achieves outstanding reconstruction performance on both in vitro and in vivo experimental data and even superior results at low photon count levels for lifetime quantification.
ISSN:2047-7538
2095-5545
2047-7538
DOI:10.1038/s41377-019-0138-x