Ascorbyl stearate stimulates cell death by oxidative stress-mediated apoptosis and autophagy in HeLa cervical cancer cell line in vitro
In this study, Asc-s was evaluated for anti-cancer effect using cervical cancer cells (HeLa). Results determine that Asc-s treatment-induced dose-dependent inhibition of proliferation of HeLa cells and induced apoptosis. Flow-cytometry analysis shows Asc-s treatment-induced accumulation of cells at...
Gespeichert in:
Veröffentlicht in: | 3 Biotech 2019-03, Vol.9 (3), p.115-115, Article 115 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, Asc-s was evaluated for anti-cancer effect using cervical cancer cells (HeLa). Results determine that Asc-s treatment-induced dose-dependent inhibition of proliferation of HeLa cells and induced apoptosis. Flow-cytometry analysis shows Asc-s treatment-induced accumulation of cells at sub-G0/G1 stage of cell cycle and induced apoptosis as confirmed by DAPI, propodium iodide, and acridine staining in HeLa cells. Asc-s entered the cells and metabolized to ascorbate and stearate moieties, increased membrane permeability, and decreased membrane fluidity in HeLa cells. Asc-s treatment-induced dose-dependent increase in autophagy protein LC3-II, mRNA levels and decreased Nrf-2 levels in HeLa cells. It is hypothesized that both ascorbyl radical and stearoyl moieties of Asc-s induced cytotoxicity by generating reactive oxygen species (ROS) and modulating membrane fluidity/permeability leading to apoptosis/autophagy of HeLa cells. Thus, our findings demonstrate that Asc-s as anti-proliferative and apoptosis inducing compound in cervical cancer cells. |
---|---|
ISSN: | 2190-572X 2190-5738 |
DOI: | 10.1007/s13205-019-1628-5 |