Gold-Nanocluster-Assisted Nanotransfer Printing Method for Metasurface Hologram Fabrication

Given the development of nano/microscale patterning techniques, efforts are being made to use them for fabricating metasurfaces. In particular, by using abrupt phase discontinuities, it is possible to generate holographic images from two-dimensional nanoscale-patterned metasurfaces. However, the fab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.3051-3051, Article 3051
Hauptverfasser: Hwang, Soon Hyoung, Cho, Jaebum, Jeon, Sohee, Kang, Hyeok-Jung, Zhao, Zhi-Jun, Park, Sungjae, Lee, Yohan, Lee, Jonghyun, Kim, Mugeon, Hahn, Joonku, Lee, Byoungho, Jeong, Jun Ho, Kim, Hwi, Youn, Jae Ryoun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the development of nano/microscale patterning techniques, efforts are being made to use them for fabricating metasurfaces. In particular, by using abrupt phase discontinuities, it is possible to generate holographic images from two-dimensional nanoscale-patterned metasurfaces. However, the fabrication of metasurface holograms is hindered by the high costs and long fabrication time involved, because the process requires expensive equipment such as that for electron-beam lithography. Therefore, it is difficult to realize metasurface holograms in a fast and repetitive manner. In this study, we propose a method for fabricating metasurface holograms based on the nanotransfer printing of the desired nanoscale patterns, which is assisted by Au nanoclusters, while controlling the bonding energy based on the shape of the deposited Au layer. Robust covalent bonds are formed between the Si of the adhesive used and the O of the SiO 2 layer in order to transfer the deposited Au onto the transparent substrate quickly. It was found that the fabricated metasurface hologram coincides with the one designed by computer-generated holography. The proposed method should lead to a significant breakthrough in the fabrication of holograms based on different types of metasurfaces at a low cost in a fast, repetitive manner with various metals.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-38891-2