SELfies and CELLfies: Whole Genome Sequencing and Annotation of Five Antibiotic Resistant Bacteria Isolated from the Surfaces of Smartphones, An Inquiry Based Laboratory Exercise in a Genomics Undergraduate Course at the Rochester Institute of Technology

Are touchscreen devices a public health risk for the transmission of pathogenic bacteria, especially those that are resistant to antibiotics? To investigate this, we embarked on a project aimed at isolating and identifying bacteria that are resistant to antibiotics from the screens of smartphones. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of genomics 2019, Vol.7, p.26-30
Hauptverfasser: Parthasarathy, Anutthaman, Wong, Narayan H, Weiss, Amanda N, Tian, Susan, Ali, Sara E, Cavanaugh, Nicole T, Chinsky, Tyler M, Cramer, Chelsea E, Gupta, Aditya, Jha, Rakshanda, Johnson, Loryn K, Tuason, Elizabeth D, Klafehn, Lauren M, Krishnadas, Varada, Musich, Ryan J, Pfaff, Jennifer M, Richman, Spencer C, Shumway, Alexandria J, Hudson, André O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Are touchscreen devices a public health risk for the transmission of pathogenic bacteria, especially those that are resistant to antibiotics? To investigate this, we embarked on a project aimed at isolating and identifying bacteria that are resistant to antibiotics from the screens of smartphones. Touchscreen devices have become ubiquitous in society, and it is important to evaluate the potential risks they pose towards public health, especially as it pertains to the harboring and transmission of pathogenic bacteria that are resistant to antibiotics. Sixteen bacteria were initially isolated of which five were unique (four species and one species). The genomes of the five unique isolates were subsequently sequenced and annotated. The genomes were analyzed using tools to predict the synthesis of antibiotics and secondary metabolites using the biotics and econdary etabolite nalysis ell (antiSMASH) tool in addition to the presence of gene clusters that denote resistance to antibiotics using the esistance ene dentifier (RGI) tool. analysis was also done to assess resistance/susceptibility to four antibiotics that are commonly used in a research laboratory setting. The data presented in this manuscript is the result of a semester-long inquiry based laboratory exercise in the genomics course (BIOL340) in the Thomas H. Gosnell School of Life Sciences/College of Science at the Rochester Institute of Technology.
ISSN:1839-9940
1839-9940
DOI:10.7150/jgen.31911