Efficient system for upstream mRNA trans-splicing to generate covalent, head-to-tail, protein multimers

We present a plasmid-based system in which upstream trans-splicing efficiently generates mRNAs that encode head-to-tail protein multimers. In this system, trans-splicing occurs between one of two downstream splice donors in the sequence encoding a C-terminal V5 epitope tag and an upstream splice acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.2274, Article 2274
Hauptverfasser: Mitsuhashi, Hiroaki, Homma, Sachiko, Beermann, Mary Lou, Ishimaru, Satoshi, Takeda, Hayato, Yu, Bryant K., Liu, Kevin, Duraiswamy, Swetha, Boyce, Frederick M., Miller, Jeffrey Boone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a plasmid-based system in which upstream trans-splicing efficiently generates mRNAs that encode head-to-tail protein multimers. In this system, trans-splicing occurs between one of two downstream splice donors in the sequence encoding a C-terminal V5 epitope tag and an upstream splice acceptor in the 5′ region of the pCS2(+) host plasmid. Using deletion and fusion constructs of the DUX4 protein as an example, we found that this system produced trans-spliced mRNAs in which coding regions from independent transcripts were fused in phase such that covalent head-to-tail protein multimers were translated. For a cDNA of ~450 bp, about half of the expressed proteins were multimeric, with the efficiency of trans-splicing and extent of multimer expression decreasing as cDNA length increased. This system generated covalent heterodimeric proteins upon co-transfections of plasmids encoding separate proteins and did not require a long complementary binding domain to position mRNAs for trans-splicing. This plasmid-based trans-splicing system is adaptable to multiple gene delivery systems, and it presents new opportunities for investigating molecular mechanisms of trans-splicing, generating covalent protein multimers with novel functions within cells, and producing mRNAs encoding large proteins from split precursors.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-36684-7