Effects of knot tightness at the molecular level
Three 819 knots in closed-loop strands of different lengths (∼20, 23, and 26 nm) were used to experimentally assess the consequences of knot tightness at the molecular level. Through the use of ¹H NMR, diffusion-ordered spectroscopy (DOSY), circular dichroism (CD), collision-induced dissociation mas...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-02, Vol.116 (7), p.2452-2457 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three 819 knots in closed-loop strands of different lengths (∼20, 23, and 26 nm) were used to experimentally assess the consequences of knot tightness at the molecular level. Through the use of ¹H NMR, diffusion-ordered spectroscopy (DOSY), circular dichroism (CD), collision-induced dissociation mass spectrometry (CID-MS) and molecular dynamics (MD) simulations on the different-sized knots, we find that the structure, dynamics, and reactivity of the molecular chains are dramatically affected by the tightness of the knotting. The tautness of entanglement causes differences in conformation, enhances the expression of topological chirality, weakens covalent bonds, inhibits decomplexation events, and changes absorption properties. Understanding the effects of tightening nanoscale knots may usefully inform the design of knotted and entangled molecular materials. |
---|---|
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1815570116 |