PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons

While PTEN-induced kinase 1 (PINK1) is well characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent synaptodendritic degeneration. Using unbiased proteomic methods, we identified valosin-containing protein (VCP) as a major PINK1-interacting prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eNeuro 2018-11, Vol.5 (6), p.ENEURO.0466-18.2018
Hauptverfasser: Wang, Kent Z Q, Steer, Erin, Otero, P Anthony, Bateman, Nicholas W, Cheng, Mary Hongying, Scott, Ana Ligia, Wu, Christine, Bahar, Ivet, Shih, Yu-Tzu, Hsueh, Yi-Ping, Chu, Charleen T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While PTEN-induced kinase 1 (PINK1) is well characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent synaptodendritic degeneration. Using unbiased proteomic methods, we identified valosin-containing protein (VCP) as a major PINK1-interacting protein. RNAi studies demonstrate that both VCP and its cofactor NSFL1C/p47 are necessary for the ability of PINK1 to increase dendritic complexity. Moreover, PINK1 regulates phosphorylation of p47, but not the VCP co-factor UFD1. Although neither VCP nor p47 interact directly with PKA, we found that PINK1 binds and phosphorylates the catalytic subunit of PKA at T197 [PKA (pT197)], a site known to activate the PKA holoenzyme. PKA in turn phosphorylates p47 at a novel site (S176) to regulate dendritic complexity. Given that PINK1 physically interacts with both the PKA holoenzyme and the VCP-p47 complex to promote dendritic arborization, we propose that PINK1 scaffolds a novel PINK1-VCP-PKA-p47 signaling pathway to orchestrate dendritogenesis in neurons. These findings highlight an important mechanism by which proteins genetically implicated in Parkinson's disease (PD; PINK1) and frontotemporal dementia (FTD; VCP) interact to support the health and maintenance of neuronal arbors.
ISSN:2373-2822
2373-2822
DOI:10.1523/ENEURO.0466-18.2018