Intracellular toxic advanced glycation end-products in cardiomyocytes may cause cardiovascular disease

Cardiovascular disease (CVD) is a lifestyle-related disease (LSRD) and one of the largest public health issues. Risk factors for CVD correlate with an excessive intake of glucose and/or fructose, which has been shown to induce the production of advanced glycation end-products (AGEs). We previously i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.2121, Article 2121
Hauptverfasser: Takata, Takanobu, Sakasai-Sakai, Akiko, Ueda, Tadashi, Takeuchi, Masayoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiovascular disease (CVD) is a lifestyle-related disease (LSRD) and one of the largest public health issues. Risk factors for CVD correlate with an excessive intake of glucose and/or fructose, which has been shown to induce the production of advanced glycation end-products (AGEs). We previously identified AGEs derived from glyceraldehyde and named them toxic AGEs (TAGE) due to their cytotoxicities and relationship with LSRD. We also reported that extracellular TAGE in the vascular system may promote CVD and that serum TAGE levels are associated with risk factors for CVD. The mechanisms responsible for the onset and/or progression of CVD by extracellular TAGE or the above risk factors involve vascular disorders. In the present study, we revealed that rat primary cultured cardiomyocytes generated intracellular TAGE, which decreased beating rates and induced cell death. LC3-II/LC3-I, a factor of autophagy, also decreased. Although intracellular TAGE may be targets of degradation as cytotoxic proteins via autophagy, they may inhibit autophagy. Furthermore, the mechanisms by which intracellular TAGE decrease beating rates and induce cell death may involve the suppression of autophagy. The present results suggest that intracellular TAGE are generated in cardiomyocytes and directly damage them, resulting in CVD.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-39202-5