Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals
Exercise can prevent the sedentary lifestyle-related risk of metabolic and cognitive decline, but mechanisms and mediators of exercise effects on human brain are relatively unexplored. We measured acute exercise-induced changes in adiponectin, insulin and other bioactive molecules in cerebrospinal f...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-02, Vol.9 (1), p.1959-1959, Article 1959 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exercise can prevent the sedentary lifestyle-related risk of metabolic and cognitive decline, but mechanisms and mediators of exercise effects on human brain are relatively unexplored. We measured acute exercise-induced changes in adiponectin, insulin and other bioactive molecules in cerebrospinal fluid (CSF) and serum from young lean individuals. Samples of serum and CSF were obtained before and 1-h after the 90-min run (75–80% HRmax; maximal heart rate), additional serum was taken at finish-line. Body composition, physical fitness, metabolic rate, cognitive functions, food preference, glucose, insulin and albumin were measured. The spectrum of 174 cytokines was assessed by protein arrays, adiponectin was also determined by ELISA and immunoblotting. CSF adiponectin decreased post-exercise by 21.3% (arrays) and 25.8% (ELISA) (p |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-38201-2 |