Noise tailoring for quantum circuits via unitary 2t-design

Because of environmental variations and imperfect operations, real-world quantum computers produce different coherent errors that are difficult to estimate. Here, we propose a method whereby the twirled noise over a unitary 2t-design (a set of unitary matrices that approximate the entire unitary gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.1790-1790
Hauptverfasser: Zhang, Linxi, Yu, Yan, Zhu, Changhua, Pei, Changxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of environmental variations and imperfect operations, real-world quantum computers produce different coherent errors that are difficult to estimate. Here, we propose a method whereby the twirled noise over a unitary 2t-design (a set of unitary matrices that approximate the entire unitary group) for quantum circuits can be tailored into stochastic noise. Then, we prove that local random circuits for twirling separable noisy channel over the Clifford group can be used to construct a unitary 2t-design, which is easy to implement in experiments. Moreover, we prove that our method is robust to gate-dependent and gate-independent noise. The stochastic noise can be both estimated by average fidelity and directly obtained by randomized benchmarking via unitary 2t-designs. Obtaining such tailored noise is an important guarantee for achieving fault-tolerant quantum computation.
ISSN:2045-2322
DOI:10.1038/s41598-018-38158-2