Establishment of renal proximal tubule cell lines derived from the kidney of p53 knockout mice
The human cell line HK-2 is most commonly used as a model of renal proximal tubular epithelial cells (PTECs) for various studies despite the absence or low expression of transporters characteristic of parental PTECs. In an effort to develop reliable PTEC models, several human cell lines have been ne...
Gespeichert in:
Veröffentlicht in: | Cytotechnology (Dordrecht) 2019-02, Vol.71 (1), p.45-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human cell line HK-2 is most commonly used as a model of renal proximal tubular epithelial cells (PTECs) for various studies despite the absence or low expression of transporters characteristic of parental PTECs. In an effort to develop reliable PTEC models, several human cell lines have been newly established over the last decade. In contrast, reliable mouse PTEC models are still unavailable. In this study, we established immortalized renal cortex tubule cell lines derived from p53 knockout mice and evaluated various PTEC characteristics toward the development of reliable mouse PTEC models. Here, we focus on MuRTE61, one of 13 newly established clonal cell lines. Albumin uptake in MuRTE61 cells was verified by incubation with fluorescent dye-labeled albumin. RT-PCR confirmed the expression of efflux transporter genes characteristic of PTECs in the MuRTE61 cells. MuRTE61 cells exhibited high sensitivity to treatment with cisplatin, a nephrotoxic agent, accompanied by upregulated expression of the uptake transporter
Slc22a2
gene. Furthermore, MuRTE61 cells consistently formed spheroids with a lumen and apicobasal polarity in three-dimensional Matrigel cultures. Apical brush border microvilli were also observed in the spheroids by transmission electron microscopy. These data validate that MuRTE61 can be characterized as a reliable mouse PTEC line. In future, detailed analysis of reliable mouse and human PTEC lines will provide an accurate extrapolation of results of experiments using mice and humans, and may help resolve apparent inconsistencies between mouse and human nephrotoxicity. |
---|---|
ISSN: | 0920-9069 1573-0778 |
DOI: | 10.1007/s10616-018-0261-1 |