Role of nutrient concentrations and water movement on diatom’s productivity in culture

Microalgal growth maximization is becoming a duty for enhancing the biotechnological fate of these photosynthetic microorganisms. This study, based on an extensive set of data, aims to revisit diatom’s cultivation in laboratory with the objective to increase growth rate and biomass production. We in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.1479-1479, Article 1479
Hauptverfasser: Orefice, Ida, Musella, Margherita, Smerilli, Arianna, Sansone, Clementina, Chandrasekaran, Raghu, Corato, Federico, Brunet, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microalgal growth maximization is becoming a duty for enhancing the biotechnological fate of these photosynthetic microorganisms. This study, based on an extensive set of data, aims to revisit diatom’s cultivation in laboratory with the objective to increase growth rate and biomass production. We investigated the growth ability and resource requirements of the coastal diatom Skeletonema marinoi Sarno & Zingone grown in laboratory in the conventional f/2 medium with aeration and in two modified conditions: (i) the same medium with water movement inside and (ii) an enriched medium with the same water movement. Results revealed that, by doubling the concentration of phosphate, silicate, microelements and vitamins, growth rate was successfully enhanced, preventing phosphate or silicate limitation in the f/2 culture medium. Yet, irrespective of the media (f/2 or enriched one), water movement induced an increase of growth efficiency compared to aeration, affecting nutrients’ requirement and consumption by diatoms. This study is an important step for enhancing diatom biomass production, reducing its cost, as required in the blue biotechnology context.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-37611-6