Fast X-ray Differential Phase Contrast Imaging with One Exposure and without Movements

Grating interferometry X-ray differential phase contrast imaging (GI-XDPCI) has provided enhanced imaging contrast and attracted more and more interests. Currently the low imaging efficiency and increased dose remain to be the bottlenecks in the engineering applications of GI-XDPCI. Different from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.1113-1113, Article 1113
Hauptverfasser: Fu, Jian, Shi, Xianhong, Guo, Wei, Peng, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grating interferometry X-ray differential phase contrast imaging (GI-XDPCI) has provided enhanced imaging contrast and attracted more and more interests. Currently the low imaging efficiency and increased dose remain to be the bottlenecks in the engineering applications of GI-XDPCI. Different from the widely-used X-ray absorption contrast imaging (XACI) found in hospitals and factories, GI-XDPCI involves a grating stepping procedure that is time-consuming and leads to a significantly increased X-ray exposure time. In this paper, we report a fast GI-XDPCI method without movements by designing a new absorption grating. There is no grating stepping in this approach, and all components remain stationary during the imaging. Three kinds of imaging contrasts are provided with greatly reduced time. This work is comprised of a numerical study of the method and its verification using a sub-set of the dataset measured with a standard GI-XDPCI system at the beam line BL13W1 of the Shanghai Synchrotron Radiation Facility (SSRF). These results have validated the presented method.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-37687-0