Comparing neural‐ and N‐gram‐based language models for word segmentation

Word segmentation is the task of inserting or deleting word boundary characters in order to separate character sequences that correspond to words in some language. In this article we propose an approach based on a beam search algorithm and a language model working at the byte/character level, the la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Information Science and Technology 2019-02, Vol.70 (2), p.187-197
Hauptverfasser: Doval, Yerai, Gómez‐Rodríguez, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Word segmentation is the task of inserting or deleting word boundary characters in order to separate character sequences that correspond to words in some language. In this article we propose an approach based on a beam search algorithm and a language model working at the byte/character level, the latter component implemented either as an n‐gram model or a recurrent neural network. The resulting system analyzes the text input with no word boundaries one token at a time, which can be a character or a byte, and uses the information gathered by the language model to determine if a boundary must be placed in the current position or not. Our aim is to use this system in a preprocessing step for a microtext normalization system. This means that it needs to effectively cope with the data sparsity present on this kind of texts. We also strove to surpass the performance of two readily available word segmentation systems: The well‐known and accessible Word Breaker by Microsoft, and the Python module WordSegment by Grant Jenks. The results show that we have met our objectives, and we hope to continue to improve both the precision and the efficiency of our system in the future.
ISSN:2330-1635
2330-1643
DOI:10.1002/asi.24082