Prediction of RNA- and DNA-Binding Proteins Using Various Machine Learning Classifiers
Nucleic acid-binding proteins play major roles in different biological processes, such as transcription, splicing and translation. Therefore, the nucleic acid-binding function prediction of proteins is a step toward full functional annotation of proteins. The aim of our research was the improvement...
Gespeichert in:
Veröffentlicht in: | Avicenna journal of medical biotechnology 2019-01, Vol.11 (1), p.104-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nucleic acid-binding proteins play major roles in different biological processes, such as transcription, splicing and translation. Therefore, the nucleic acid-binding function prediction of proteins is a step toward full functional annotation of proteins. The aim of our research was the improvement of nucleic-acid binding function prediction.
In the current study, nine machine-learning algorithms were used to predict RNA- and DNA-binding proteins and also to discriminate between RNA-binding proteins and DNA-binding proteins. The electrostatic features were utilized for prediction of each function in corresponding adapted protein datasets. The leave-one-out cross-validation process was used to measure the performance of employed classifiers.
Radial basis function classifier gave the best results in predicting RNA- and DNA-binding proteins in comparison with other classifiers applied. In discriminating between RNA- and DNA-binding proteins, multilayer perceptron classifier was the best one.
Our findings show that the prediction of nucleic acid-binding function based on these simple electrostatic features can be improved by applied classifiers. Moreover, a reasonable progress to distinguish between RNA- and DNA-binding proteins has been achieved. |
---|---|
ISSN: | 2008-2835 2008-4625 |