Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation
One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, p...
Gespeichert in:
Veröffentlicht in: | Science advances 2019-01, Vol.5 (1), p.eaav1851-eaav1851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaav1851 |
---|---|
container_issue | 1 |
container_start_page | eaav1851 |
container_title | Science advances |
container_volume | 5 |
creator | Zhao, J He, G Huang, S Villalobos, L F Dakhchoune, M Bassas, H Agrawal, K V |
description | One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O
plasma and O
treatment. A high density (ca. 2.1 × 10
cm
) of H
-sieving pores was achieved while limiting the percentage of CH
-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H
permeance, 1340 to 6045 gas permeation units; H
/CH
separation factor, 15.6 to 25.1; H
/C
H
separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes. |
doi_str_mv | 10.1126/sciadv.aav1851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6357726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229086519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1df686b59f79d04bfc342f26d965370885ff88fde86cf9b650b31a1a69c59c7a3</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtRCIVqVXjshHLln8ETvxBQlVBSpV4gJna-KME6PEDnZ2oQf-O1nttirSSPM08-bNaB4hbznbcS70h-IC9IcdwIG3ir8gl0I2qhKqbl8-wxfkupSfjDFea624eU0uJGtqXTfqkvy9Xd0Y4kAHKFUJeDjiCDEtKWOhIdKyVSasJnjATIcMy4gR6e-wjhTiFkNZc5rpktGFElKkPmU6hmGsFswbniE6PMrTOfxZ9xlpwQUyrBv3DXnlYSp4fc5X5Mfn2-83X6v7b1_ubj7dV04atla897rVnTK-MT2rO-9kLbzQvdFKNqxtlfdt63tstfOm04p1kgMHbZwyrgF5RT6edJd9N2PvMK4ZJrvkMEN-sAmC_b8Tw2iHdLBaqqYRehN4fxbI6dcey2rnUBxOE0RM-2KFEIa1x-9u1N2J6nIqJaN_WsOZPdpmT7bZs23bwLvnxz3RH02S_wDaCJnp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229086519</pqid></control><display><type>article</type><title>Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, J ; He, G ; Huang, S ; Villalobos, L F ; Dakhchoune, M ; Bassas, H ; Agrawal, K V</creator><creatorcontrib>Zhao, J ; He, G ; Huang, S ; Villalobos, L F ; Dakhchoune, M ; Bassas, H ; Agrawal, K V</creatorcontrib><description>One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O
plasma and O
treatment. A high density (ca. 2.1 × 10
cm
) of H
-sieving pores was achieved while limiting the percentage of CH
-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H
permeance, 1340 to 6045 gas permeation units; H
/CH
separation factor, 15.6 to 25.1; H
/C
H
separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aav1851</identifier><identifier>PMID: 30746475</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; Materials Science ; SciAdv r-articles</subject><ispartof>Science advances, 2019-01, Vol.5 (1), p.eaav1851-eaav1851</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-1df686b59f79d04bfc342f26d965370885ff88fde86cf9b650b31a1a69c59c7a3</citedby><cites>FETCH-LOGICAL-c390t-1df686b59f79d04bfc342f26d965370885ff88fde86cf9b650b31a1a69c59c7a3</cites><orcidid>0000-0002-0745-4246 ; 0000-0003-4870-1722 ; 0000-0002-5170-6412 ; 0000-0002-1423-0291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357726/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357726/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30746475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, J</creatorcontrib><creatorcontrib>He, G</creatorcontrib><creatorcontrib>Huang, S</creatorcontrib><creatorcontrib>Villalobos, L F</creatorcontrib><creatorcontrib>Dakhchoune, M</creatorcontrib><creatorcontrib>Bassas, H</creatorcontrib><creatorcontrib>Agrawal, K V</creatorcontrib><title>Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O
plasma and O
treatment. A high density (ca. 2.1 × 10
cm
) of H
-sieving pores was achieved while limiting the percentage of CH
-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H
permeance, 1340 to 6045 gas permeation units; H
/CH
separation factor, 15.6 to 25.1; H
/C
H
separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.</description><subject>Applied Sciences and Engineering</subject><subject>Materials Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUU1v1DAQtRCIVqVXjshHLln8ETvxBQlVBSpV4gJna-KME6PEDnZ2oQf-O1nttirSSPM08-bNaB4hbznbcS70h-IC9IcdwIG3ir8gl0I2qhKqbl8-wxfkupSfjDFea624eU0uJGtqXTfqkvy9Xd0Y4kAHKFUJeDjiCDEtKWOhIdKyVSasJnjATIcMy4gR6e-wjhTiFkNZc5rpktGFElKkPmU6hmGsFswbniE6PMrTOfxZ9xlpwQUyrBv3DXnlYSp4fc5X5Mfn2-83X6v7b1_ubj7dV04atla897rVnTK-MT2rO-9kLbzQvdFKNqxtlfdt63tstfOm04p1kgMHbZwyrgF5RT6edJd9N2PvMK4ZJrvkMEN-sAmC_b8Tw2iHdLBaqqYRehN4fxbI6dcey2rnUBxOE0RM-2KFEIa1x-9u1N2J6nIqJaN_WsOZPdpmT7bZs23bwLvnxz3RH02S_wDaCJnp</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhao, J</creator><creator>He, G</creator><creator>Huang, S</creator><creator>Villalobos, L F</creator><creator>Dakhchoune, M</creator><creator>Bassas, H</creator><creator>Agrawal, K V</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0745-4246</orcidid><orcidid>https://orcid.org/0000-0003-4870-1722</orcidid><orcidid>https://orcid.org/0000-0002-5170-6412</orcidid><orcidid>https://orcid.org/0000-0002-1423-0291</orcidid></search><sort><creationdate>20190101</creationdate><title>Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation</title><author>Zhao, J ; He, G ; Huang, S ; Villalobos, L F ; Dakhchoune, M ; Bassas, H ; Agrawal, K V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1df686b59f79d04bfc342f26d965370885ff88fde86cf9b650b31a1a69c59c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied Sciences and Engineering</topic><topic>Materials Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, J</creatorcontrib><creatorcontrib>He, G</creatorcontrib><creatorcontrib>Huang, S</creatorcontrib><creatorcontrib>Villalobos, L F</creatorcontrib><creatorcontrib>Dakhchoune, M</creatorcontrib><creatorcontrib>Bassas, H</creatorcontrib><creatorcontrib>Agrawal, K V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, J</au><au>He, G</au><au>Huang, S</au><au>Villalobos, L F</au><au>Dakhchoune, M</au><au>Bassas, H</au><au>Agrawal, K V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>eaav1851</spage><epage>eaav1851</epage><pages>eaav1851-eaav1851</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O
plasma and O
treatment. A high density (ca. 2.1 × 10
cm
) of H
-sieving pores was achieved while limiting the percentage of CH
-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H
permeance, 1340 to 6045 gas permeation units; H
/CH
separation factor, 15.6 to 25.1; H
/C
H
separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>30746475</pmid><doi>10.1126/sciadv.aav1851</doi><orcidid>https://orcid.org/0000-0002-0745-4246</orcidid><orcidid>https://orcid.org/0000-0003-4870-1722</orcidid><orcidid>https://orcid.org/0000-0002-5170-6412</orcidid><orcidid>https://orcid.org/0000-0002-1423-0291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2019-01, Vol.5 (1), p.eaav1851-eaav1851 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6357726 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Applied Sciences and Engineering Materials Science SciAdv r-articles |
title | Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Etching%20gas-sieving%20nanopores%20in%20single-layer%20graphene%20with%20an%20angstrom%20precision%20for%20high-performance%20gas%20mixture%20separation&rft.jtitle=Science%20advances&rft.au=Zhao,%20J&rft.date=2019-01-01&rft.volume=5&rft.issue=1&rft.spage=eaav1851&rft.epage=eaav1851&rft.pages=eaav1851-eaav1851&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aav1851&rft_dat=%3Cproquest_pubme%3E2229086519%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229086519&rft_id=info:pmid/30746475&rfr_iscdi=true |