Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation

One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2019-01, Vol.5 (1), p.eaav1851-eaav1851
Hauptverfasser: Zhao, J, He, G, Huang, S, Villalobos, L F, Dakhchoune, M, Bassas, H, Agrawal, K V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O plasma and O treatment. A high density (ca. 2.1 × 10 cm ) of H -sieving pores was achieved while limiting the percentage of CH -permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H permeance, 1340 to 6045 gas permeation units; H /CH separation factor, 15.6 to 25.1; H /C H separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aav1851