Reactivity of redox sensitive paramagnetic nitroxyl contrast agents with reactive oxygen species

The reactivity of nitroxyl free radicals, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CmP), with reactive oxygen species (ROS) were compared as typical 6-membered and 5-membered ring nitroxyl compounds, respectively. The reactivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Clinical Biochemistry and Nutrition 2019, Vol.64(1), pp.13-19
Hauptverfasser: Nyui, Minako, Nakanishi, Ikuo, Anzai, Kazunori, Ozawa, Toshihiko, Matsumoto, Ken-ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reactivity of nitroxyl free radicals, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CmP), with reactive oxygen species (ROS) were compared as typical 6-membered and 5-membered ring nitroxyl compounds, respectively. The reactivity of the hydroxylamine forms of both these nitroxyl radicals (TEMPOL-H and CmP-H) was also assessed. Two free radical species of ROS, hydroxyl radical (•OH) and superoxide (O2•−), were subjected to a competing reaction. •OH was generated by UV irradiation from an aqueous H2O2 solution (H2O2-UV system), and O2•− was generated by a reaction between hypoxanthine and xanthine oxidase (HX-XO system). •OH and O2•− generated by the H2O2-UV and HX-XO systems, respectively, were measured by electron paramagnetic resonance (EPR) spin-trapping, and the amount of spin adducts generated by each system was adjusted to be equal. The time courses of the one-electron oxidation of TEMPOL, CmP, TEMPOL-H, and CmP-H in each ROS generation system were compared. A greater amount of TEMPOL was oxidized in the HX-XO system compared with the H2O2-UV system, whereas the reverse was observed for CmP. Although the hydroxylamine forms of the tested nitroxyl radicals were oxidized evenly in the H2O2-UV and HX-XO systems, the amount of oxidized CmP-H was approximately 3 times greater compared with TEMPOL-H.
ISSN:0912-0009
1880-5086
DOI:10.3164/jcbn.17-135