Elucidation of an intrinsic parameter for evaluating the electrical quality of graphene flakes

A test method for evaluating the quality of graphene flakes, such as reduced graphene oxide (rGO) and graphene nanopowder (GNP), was developed in this study. The pelletizer was selected for a sampling tool, which enables us to formulate the flake sample as a measurable sample. Various parameters wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-01, Vol.9 (1), p.557-557, Article 557
Hauptverfasser: Lee, Ha-Jin, Kim, Ji Sun, Lee, Kwang Young, Park, Kyung Ho, Bae, Jong-Seong, Mubarak, Mahfuza, Lee, Haeseong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A test method for evaluating the quality of graphene flakes, such as reduced graphene oxide (rGO) and graphene nanopowder (GNP), was developed in this study. The pelletizer was selected for a sampling tool, which enables us to formulate the flake sample as a measurable sample. Various parameters were measured from the pelletized sample in order to elucidate the best parameter for representing the quality of the graphene flakes in terms of their electrical properties. Based on the analysis of 4-probe measurement data on the pelletized sample, the best intrinsic parameter is volume resistivity (or volume conductivity) rather than resistivity (or conductivity). Additionally, the possible modification of a sample before and after the pressurization was investigated by electron microscopy and Raman spectroscopy. No significant modification was observed. The volume conductivity in the two types of the graphene was different from their individual conductivities by one order of magnitude. Based on the results of X-ray photoelectron spectroscopy and Raman spectroscopy measurements, the volume conductivity of the graphene flake samples was governed by the oxygen content in the sample. Our achievements will promote the effective use of powder-type graphene products for further applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-37010-x