Real‐time robotic airway measurement: An additional benefit of a novel steady‐hand robotic platform
Objective Describe the secondary capability of a robotic system to provide real‐time measurements of airway dimensions with high fidelity. Methods Seven unique phantoms of laryngotracheal stenosis (LTS) were modeled using a computer‐aided design tool and were three dimensionally printed. These steno...
Gespeichert in:
Veröffentlicht in: | The Laryngoscope 2019-02, Vol.129 (2), p.324-329 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
Describe the secondary capability of a robotic system to provide real‐time measurements of airway dimensions with high fidelity.
Methods
Seven unique phantoms of laryngotracheal stenosis (LTS) were modeled using a computer‐aided design tool and were three dimensionally printed. These stenoses were of different dimensions and orientations, and some were purposefully oblique. The dimensions of the stenoses were then measured with the novel Robotic ENT (Ear, Nose, and Throat) Microsurgery System (REMS; Galen Robotics, Inc., Sunnyvale, CA) because it is capable of tool position memory in three dimensional (3D) space. Five participants (two laryngologists, two otolaryngology–head and neck surgery residents, one neurotology fellow) measured each axis of stenosis (anteroposterior, lateral, and craniocaudal) three times for each of the seven stenosis phantoms. These measurements were then compared to the known design dimensions. Mean magnitude of error (MOE) and interrater reliability (IRR) using an intraclass correlation coefficient (ICC) were then calculated.
Results
Mean MOE and standard deviation for all measurements was 0.306 ± 0.247 mm. Mean MOE was 0.374 ± 0.292 mm, 0.300 ± 0.237 mm, and 0.244 ± 0.185 mm for the anteroposterior, lateral, and craniocaudal dimensions of stenosis, respectively. Eighty‐two percent of all measurements had MOE |
---|---|
ISSN: | 0023-852X 1531-4995 |
DOI: | 10.1002/lary.27435 |