Differential suppression of persistent insect specific viruses in trans-infected wMel and wMelPop-CLA Aedes-derived mosquito lines

Wolbachia suppresses the replication of +ssRNA viruses such as dengue and Zika viruses in Aedes aegypti mosquitoes. However, the range of viruses affected by this endosymbiont is yet to be explored. Recently, novel insect-specific viruses (ISVs) have been described from numerous mosquito species and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 2019-01, Vol.527, p.141-145
Hauptverfasser: McLean, Breeanna J., Dainty, Kimberley R., Flores, Heather A., O’Neill, Scott L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wolbachia suppresses the replication of +ssRNA viruses such as dengue and Zika viruses in Aedes aegypti mosquitoes. However, the range of viruses affected by this endosymbiont is yet to be explored. Recently, novel insect-specific viruses (ISVs) have been described from numerous mosquito species and mosquito-derived cell lines. Cell-fusing agent virus (Flaviviridae) and Phasi Charoen-like virus (Bunyaviridae) persistently infect the Ae. aegypti cell line Aag2 which has been used for experimental studies with both the wMel and wMelPop-CLA strains. Wolbachia was found to restrict the replication of CFAV but not the PCLV infection in these lines. Furthermore, an additional Ae. albopictus cell line (RML-12) which contained either wMel or wMelPop-CLA was assessed. While no infectious +ssRNA or dsRNA viruses were detected, a PCLV infection was identified. These observations provide additional evidence to support that insect-specific, +ssRNA viruses can be suppressed in cell culture by Wolbachia but -ssRNA viruses may not. •Wolbachia suppresses CFAV in Aag2 wMel and wMelPop-CLA cell lines.•PCLV persistently infects the RML-12 cell line.•lbWoLA cachia does not suppress PCLV in Aag2 or RML-12 wMel and wMelPop-Cell lines.
ISSN:0042-6822
1096-0341
DOI:10.1016/j.virol.2018.11.012