Linear variational principle for Riemann mappings and discrete conformality
We consider Riemann mappings from bounded Lipschitz domains in the plane to a triangle. We show that in this case the Riemann mapping has a linear variational principle: It is the minimizer of the Dirichlet energy over an appropriate affine space. By discretizing the variational principle in a natur...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-01, Vol.116 (3), p.732-737 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider Riemann mappings from bounded Lipschitz domains in the plane to a triangle. We show that in this case the Riemann mapping has a linear variational principle: It is the minimizer of the Dirichlet energy over an appropriate affine space. By discretizing the variational principle in a natural way we obtain discrete conformal maps which can be computed by solving a sparse linear system. We show that these discrete conformal maps converge to the Riemann mapping in H1, even for non-Delaunay triangulations. Additionally, for Delaunay triangulations the discrete conformal maps converge uniformly and are known to be bijective. As a consequence we show that the Riemann mapping between two bounded Lipschitz domains can be uniformly approximated by composing the discrete Riemann mappings between each Lipschitz domain and the triangle. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1809731116 |