Multiband RF pulse design for realistic gradient performance

Purpose Simultaneous multi‐slice techniques are reliant on multiband RF pulses, for which conventional design strategies result in long pulse durations, lengthening echo‐times so lowering SNR for spin‐echo imaging, and lengthening repetition times for gradient echo sequences. Pulse durations can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2019-01, Vol.81 (1), p.362-376
Hauptverfasser: Abo Seada, Samy, Price, Anthony N., Schneider, Torben, Hajnal, Joseph V., Malik, Shaihan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Simultaneous multi‐slice techniques are reliant on multiband RF pulses, for which conventional design strategies result in long pulse durations, lengthening echo‐times so lowering SNR for spin‐echo imaging, and lengthening repetition times for gradient echo sequences. Pulse durations can be reduced with advanced RF pulse design methods that use time‐variable selection gradients. However, the ability of gradient systems to reproduce fast switching pulses is often limited and can lead to image artifacts when ignored. We propose a time‐efficient pulse design method that inherently produces gradient waveforms with lower temporal bandwidth. Methods Efficient multiband RF pulses with time‐variable gradients were designed using time‐optimal VERSE. Using VERSE directly on multiband pulses leads to gradient waveforms with high temporal bandwidth, whereas VERSE applied first to singleband RF pulses and then modulated to make them multiband, significantly reduces this. The relative performance of these approaches was compared using simulation and experimental measurements. Results Applying VERSE before multiband modulation was successful at removing out‐of‐band slice distortion. This effectively removes the need for high frequency modulation in the gradient waveform while preserving the benefit of time‐efficiency inherited from VERSE. Conclusion We propose a time‐efficient RF pulse design that produces gradient pulses with lower temporal bandwidth, reducing image artifacts associated with finite temporal bandwidth of gradient systems.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.27411